In pattern recognition , the k -nearest neighbor algorithm ( k -NN) is a method for classifying objects based on closest training examples in the feature space . k -NN is a type of instance-based learning , or lazy learning where the function is only approximated locally and all computation is deferred until classification. The k -nearest neighbor algorithm is amongst the simplest of all machine learning algorithms: an object is classified by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors ( k is a positive integer , typically small). If k = 1, then the object is simply assigned to the class of its nearest neighbor. The k -NN algorithm can also be adapted for use in estimating continuous variables. One such implementation uses an inverse distance weighted average of the k -nearest multivariate neighbors. This algorithm functions as follows: Compute Euclidean or Mahalanobis distance from target plo...
Aresh T. Saharkhiz