Skip to main content

OPENCV2 C++ basics (OOP) edge detection using CANNY

if you have an OK background on C++ you can follow easily:

ive seperated the camera capturing and the edge detection to separate classes.
the main entry point remains the same.
you can use the code to add a new class to process images using the atscameraCapture class.

#include <iostream>
#include <iomanip>
#include <sstream>
#include <string>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

//for atsEdges
#include <opencv2/imgproc/imgproc.hpp>

class atscameraCapture
{
public:
    cv::Mat ats_getImage()
    {
        //check if Camera is still open
        if (!cap.isOpened())
        {
            std::cout< "Cant Capture";
            exit(0);
        }
        //camera is open so get a frame
            cv::Mat frame;
            cap>> frame;
        //return the frame
            return frame;
    }
    atscameraCapture()
    {
        //create a camera capture and assign it to a local private variable
        cv::VideoCapture capture(0);
        cap = capture;
    }
private:
    cv::VideoCapture cap;
};


class atsEdges
{
public:
    cv::Mat getEdges(cv::Mat image)
    {
        cv::Mat edges;
        cvtColor(image,edges,CV_BGR2GRAY); //convert from RGB color space to GRAY
        Canny(edges,edges,
            0,    // double threshold1
            30,    //double threshold2
            3); //int apertureSize=3, bool L2gradient=false)
        return edges;

    }
   
private:
};

int main()
{
    atscameraCapture mine; //initialize
    for(;;)
        {
        cv::Mat image = mine.ats_getImage();
        cv::imshow("image",image);
       
        atsEdges pl;

        cv::imshow("pl image",pl.getEdges(image));

        if(cv::waitKey(30) >= 0) break;
        }
    return 0;
}

Comments

Popular posts from this blog

Computing Entropy of an image (CORRECTED)

entropy is a measure of the uncertainty associated with a random variable. basically i want to get a single value representing the entropy of an image. 1. Assign 255 bins for the range of values between 0-255 2. separate the image into its 3 channels 3. compute histogram for each channel 4. normalize all 3 channels unifirmely 5. for each channel get the bin value (Hc) and use its absolute value (negative log is infinity) 6. compute Hc*log10(Hc) 7. add to entropy and continue with 5 until a single value converges 5. get the frequency of each channel - add all the values of the bin 6. for each bin get a probability - if bin 1 = 20 bin 2 = 30 then frequency is 50 and probability is 20/50 and 30/50 then compute using shannon formula  REFERENCE: http://people.revoledu.com/kardi/tutorial/DecisionTree/how-to-measure-impurity.htm class atsHistogram { public:     cv::Mat DrawHistogram(Mat src)     {         /// Separate the image in 3 places ( R, G and B )    

Blob Detection, Connected Component (Pure Opencv)

Connected-component labeling (alternatively connected-component analysis, blob extraction, region labeling, blob discovery, or region extraction) is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not to be confused with segmentation. i got the initial code from this URL: http://nghiaho.com/?p=1102 However the code did not compile with my setup of OpenCV 2.2, im guessing it was an older version. so a refactored and corrected the errors to come up with this Class class atsBlobFinder     {     public:         atsBlobFinder()         {         }         ///Original Code by http://nghiaho.com/?p=1102         ///Changed and added commments. Removed Errors         ///works with VS2010 and OpenCV 2.2+         void FindBlobs(const cv::Mat &binary, vector < vector<cv::Point>  > &blobs)         {             blobs.clear();             // Fill the la

Region of interest selection ROI

#include <stdlib.h> #include <stdio.h> #include <math.h> #include <string.h> #include<opencv2\opencv.hpp> #include <opencv2\highgui\highgui.hpp> int main(int argc, char *argv[]) { CvCapture *capture = 0; IplImage *frame = 0; int key = 0; /* initialize camera */ capture = cvCaptureFromCAM( 0 ); /* always check */ if ( !capture ) { printf("Cannot open initialize webcam!\n" ); exit(0); } /* create a window for the video */ cvNamedWindow( "result", CV_WINDOW_AUTOSIZE ); while( key != 'q' ) { /* get a frame */ frame = cvQueryFrame( capture ); /* always check */ if( !frame ) break; /* sets the Region of Interest*/ cvSetImageROI(frame, cvRect(150, 50, 150, 250)); /* create destination image */ IplImage *img2 = cvCreateImage(cvGetSize(frame), frame->depth, frame->nChannels); /* * do the main processing with subimage here. * in this example, we simply invert the subimage