Skip to main content

Computing Gini Index of an image (measure of Impurity)

Using my previous posts Class file and this reference:
http://people.revoledu.com/kardi/tutorial/DecisionTree/how-to-measure-impurity.htm

float computeGiniIndex(Mat r, Mat g, Mat b)
    {
        float giniIndex = 0.0;
        float frequency = getFrequencyOfBin(r);
        for( int i = 1; i < histSize; i++ )
        {
            float Hc = abs(getHistogramBinValue(r,i));
            giniIndex += Hc*Hc;
        }
        frequency = getFrequencyOfBin(g);
        for( int i = 1; i < histSize; i++ )
        {
            float Hc = abs(getHistogramBinValue(g,i));
            giniIndex += Hc*Hc;
        }
        frequency = getFrequencyOfBin(b);
        for( int i = 1; i < histSize; i++ )
        {
            float Hc = abs(getHistogramBinValue(b,i));
            giniIndex += Hc*Hc;
        }
        giniIndex = 1 - (giniIndex);
        //cout << giniIndex <<endl;
        return giniIndex;
    }

Comments

Popular posts from this blog

Blob Detection, Connected Component (Pure Opencv)

Connected-component labeling (alternatively connected-component analysis, blob extraction, region labeling, blob discovery, or region extraction) is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not to be confused with segmentation. i got the initial code from this URL: http://nghiaho.com/?p=1102 However the code did not compile with my setup of OpenCV 2.2, im guessing it was an older version. so a refactored and corrected the errors to come up with this Class class atsBlobFinder     {     public:         atsBlobFinder()         {         }         ///Original Code by http://nghiaho.com/?p=1102         ///Changed and added commments. Removed Errors     ...

Computing Entropy of an image (CORRECTED)

entropy is a measure of the uncertainty associated with a random variable. basically i want to get a single value representing the entropy of an image. 1. Assign 255 bins for the range of values between 0-255 2. separate the image into its 3 channels 3. compute histogram for each channel 4. normalize all 3 channels unifirmely 5. for each channel get the bin value (Hc) and use its absolute value (negative log is infinity) 6. compute Hc*log10(Hc) 7. add to entropy and continue with 5 until a single value converges 5. get the frequency of each channel - add all the values of the bin 6. for each bin get a probability - if bin 1 = 20 bin 2 = 30 then frequency is 50 and probability is 20/50 and 30/50 then compute using shannon formula  REFERENCE: http://people.revoledu.com/kardi/tutorial/DecisionTree/how-to-measure-impurity.htm class atsHistogram { public:     cv::Mat DrawHistogram(Mat src)     {      ...

Affine VS Perspective Transformation using CAMERA

I have used OpenCV's AFFINE and PERSPECTIVE transform to WARP the images. this same process can be done using HARRIS and RANSAC #include <opencv2/video/tracking.hpp> #include <opencv2/highgui/highgui.hpp> #include <stdio.h> #include <opencv2/objdetect/objdetect.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <opencv2/imgproc/imgproc_c.h> #include <opencv2/video/tracking.hpp> #include <iostream> #include <vector>  void PrintMatrix ( CvMat *Matrix , char * name )  {  printf ("%s\n", name );     for ( int i=0;i<Matrix -> rows ;i++)      {          for ( int j =0;j< Matrix -> cols ;j ++)          {             printf (" %.3f\t",cvGet2D ( Matrix ,i,j).val [0]...