Skip to main content

Region of interest selection ROI


#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include<opencv2\opencv.hpp>
#include <opencv2\highgui\highgui.hpp>


int main(int argc, char *argv[])
{
CvCapture *capture = 0;
IplImage *frame = 0;
int key = 0;
/* initialize camera */
capture = cvCaptureFromCAM( 0 );
/* always check */
if ( !capture ) {
printf("Cannot open initialize webcam!\n" );
exit(0);
}

/* create a window for the video */
cvNamedWindow( "result", CV_WINDOW_AUTOSIZE );
while( key != 'q' ) {
/* get a frame */
frame = cvQueryFrame( capture );

/* always check */
if( !frame ) break;
/* sets the Region of Interest*/
cvSetImageROI(frame, cvRect(150, 50, 150, 250));
/* create destination image */
IplImage *img2 = cvCreateImage(cvGetSize(frame),
frame->depth,
frame->nChannels);

/*
* do the main processing with subimage here.
* in this example, we simply invert the subimage
*/
cvNot(frame,frame);

/* copy subimage */
cvCopy(frame, img2, NULL);
/* always reset the Region of Interest */
cvResetImageROI(frame);

/* display current frame */
cvShowImage( "result", frame );
/* exit if user press 'q' */
key = cvWaitKey( 1 );
}

/* free memory */
cvDestroyWindow( "result" );
cvReleaseCapture( &capture );
return 0;
}

Comments

Popular posts from this blog

Computing Entropy of an image (CORRECTED)

entropy is a measure of the uncertainty associated with a random variable. basically i want to get a single value representing the entropy of an image. 1. Assign 255 bins for the range of values between 0-255 2. separate the image into its 3 channels 3. compute histogram for each channel 4. normalize all 3 channels unifirmely 5. for each channel get the bin value (Hc) and use its absolute value (negative log is infinity) 6. compute Hc*log10(Hc) 7. add to entropy and continue with 5 until a single value converges 5. get the frequency of each channel - add all the values of the bin 6. for each bin get a probability - if bin 1 = 20 bin 2 = 30 then frequency is 50 and probability is 20/50 and 30/50 then compute using shannon formula  REFERENCE: http://people.revoledu.com/kardi/tutorial/DecisionTree/how-to-measure-impurity.htm class atsHistogram { public:     cv::Mat DrawHistogram(Mat src)     {      ...

Blob Detection, Connected Component (Pure Opencv)

Connected-component labeling (alternatively connected-component analysis, blob extraction, region labeling, blob discovery, or region extraction) is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not to be confused with segmentation. i got the initial code from this URL: http://nghiaho.com/?p=1102 However the code did not compile with my setup of OpenCV 2.2, im guessing it was an older version. so a refactored and corrected the errors to come up with this Class class atsBlobFinder     {     public:         atsBlobFinder()         {         }         ///Original Code by http://nghiaho.com/?p=1102         ///Changed and added commments. Removed Errors     ...