Alot of feature detectors such as the Haar classifier will return rectangular shapes presented as a detected feature.
one of the things to do in order to track these, is to find the center of the rectangle.
int main( int argc, char** argv )
{
atscameraCapture movie;
char code = (char)-1;
for(;;)
{
//get camera
cv::Mat imgs = movie.ats_getImage();
#define drawCross( center, color, d, img ) \
line( img, Point( center.x - d, center.y - d ), \
Point( center.x + d, center.y + d ), color, 2, CV_AA, 0); \
line( img, Point( center.x + d, center.y - d ), \
Point( center.x - d, center.y + d ), color, 2, CV_AA, 0 )
cv::Point center;
//given 2 points representing the rectangle
cv::Point topLeft(100,100);
cv::Point bottomRight(200,200);
cv::rectangle(imgs,topLeft,bottomRight,Scalar( 0, 255, 255 ),-1, 8 );
//compute for center of triangle
center.x = (topLeft.x+bottomRight.x)/2;
center.y = (topLeft.y+bottomRight.y)/2;
drawCross(center,Scalar(0,0,255), 5,imgs);
imshow("camera", imgs);
code = (char)waitKey(100);
if( code == 27 || code == 'q' || code == 'Q' )
break;
}
return 0;
}
Another way of finding the center of gravity is using the internal function of OPENCV called cv::moments
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
RNG rng(12345);
/** @function main */
int main( int argc, char** argv )
{
atscameraCapture movie;
char code = (char)-1;
for(;;)
{
//get camera
cv::Mat src_gray;
cv::Mat imgs = movie.ats_getImage();
#define drawCross( center, color, d, img ) \
line( img, Point( center.x - d, center.y - d ), \
Point( center.x + d, center.y + d ), color, 2, CV_AA, 0); \
line( img, Point( center.x + d, center.y - d ), \
Point( center.x - d, center.y + d ), color, 2, CV_AA, 0 )
/// Convert image to gray and blur it
cvtColor( imgs, src_gray, CV_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Detect edges using canny
Canny( src_gray, canny_output, 10, 50, 3 );
/// Find contours
findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Get the moments
vector<Moments> mu(contours.size() );
for( int i = 0; i < contours.size(); i++ )
{ mu[i] = moments( Mat(contours[i]), false ); }
/// Get the mass centers:
vector<Point2f> mc( contours.size() );
for( int i = 0; i < contours.size(); i++ )
{ mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 );
}
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( int i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
circle( drawing, mc[i], 4, color, -1, 8, 0 );
printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(Mat(contours[i])), arcLength( Mat(contours[i]), true ) );
}
namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
//imshow("camera", src_gray);
code = (char)waitKey(1000);
if( code == 27 || code == 'q' || code == 'Q' )
break;
}
return 0;
}
Hello Friend I am doing my project in open CV. I would like to calculate center of gravity of image in open CV.
ReplyDeleteAny help from your side is appreciated.
Thank you in advance.