Skip to main content

Opencv with OpenGL (installation and trials)

so i needed to install opengl for a 2D/3D test using opencv

since Opengl libraries come preinstalled just needed to download GLUT from:
http://www.xmission.com/~nate/glut.html

since im running on a 64bit machine i need to place the GLUT32.dll in the C:\Windows\SysWOW64 instead of C:\Windows\System32

i then place the GLUT.h in the:
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\include

and the GLUT32.lib in the
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\lib

in the visual studio dependencies i just add the following:
opengl32.lib
glut32.lib
glu32.lib








and im all set and good to go with the test program


/**********************************
  Simple.cpp
  A simple GLUT program.

****************************************************************************/

#include <string.h>
#include <glut.h>

void mydisplay( void )
{
    glClearColor (0.0, 0.0, 0.0, 0.0);
    glClear(GL_COLOR_BUFFER_BIT);

    /* set drawing/fill  color to white */

    glColor3f(1.0, 1.0, 1.0);

    /* set up standard orthogonal view with clipping */
    /* box as cube of side 2 centered at origin */
    /* This is default view and these statement could be removed */

    glMatrixMode (GL_PROJECTION);
    glLoadIdentity ();
    glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
    /* define unit square polygon */

    glBegin(GL_POLYGON);
    glVertex2f(-0.5, -0.5);
    glVertex2f(-0.5, 0.5);
    glVertex2f(0.5, 0.5);
    glVertex2f(0.5, -0.5);
    glEnd();

    /* flush GL buffers */

    glFlush();}


/**************************************** main() ********************/
void init()
{
    glClearColor (0.0, 0.0, 0.0, 1.0);

    glColor3f(1.0, 1.0, 1.0);

    glMatrixMode (GL_PROJECTION);   
    glLoadIdentity ();   
    glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0); 
}

void main(int argc, char* argv[])
{
    glutInit(&argc,argv);
    glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
    glutInitWindowSize(500,500);
    glutInitWindowPosition(0,0);
    glutCreateWindow("simple");
    glutDisplayFunc(mydisplay);

    init();

    glutMainLoop();

}

Comments

Post a Comment

Popular posts from this blog

Computing Entropy of an image (CORRECTED)

entropy is a measure of the uncertainty associated with a random variable. basically i want to get a single value representing the entropy of an image. 1. Assign 255 bins for the range of values between 0-255 2. separate the image into its 3 channels 3. compute histogram for each channel 4. normalize all 3 channels unifirmely 5. for each channel get the bin value (Hc) and use its absolute value (negative log is infinity) 6. compute Hc*log10(Hc) 7. add to entropy and continue with 5 until a single value converges 5. get the frequency of each channel - add all the values of the bin 6. for each bin get a probability - if bin 1 = 20 bin 2 = 30 then frequency is 50 and probability is 20/50 and 30/50 then compute using shannon formula  REFERENCE: http://people.revoledu.com/kardi/tutorial/DecisionTree/how-to-measure-impurity.htm class atsHistogram { public:     cv::Mat DrawHistogram(Mat src)     {         /// Separate the image in 3 places ( R, G and B )    

Blob Detection, Connected Component (Pure Opencv)

Connected-component labeling (alternatively connected-component analysis, blob extraction, region labeling, blob discovery, or region extraction) is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not to be confused with segmentation. i got the initial code from this URL: http://nghiaho.com/?p=1102 However the code did not compile with my setup of OpenCV 2.2, im guessing it was an older version. so a refactored and corrected the errors to come up with this Class class atsBlobFinder     {     public:         atsBlobFinder()         {         }         ///Original Code by http://nghiaho.com/?p=1102         ///Changed and added commments. Removed Errors         ///works with VS2010 and OpenCV 2.2+         void FindBlobs(const cv::Mat &binary, vector < vector<cv::Point>  > &blobs)         {             blobs.clear();             // Fill the la

Region of interest selection ROI

#include <stdlib.h> #include <stdio.h> #include <math.h> #include <string.h> #include<opencv2\opencv.hpp> #include <opencv2\highgui\highgui.hpp> int main(int argc, char *argv[]) { CvCapture *capture = 0; IplImage *frame = 0; int key = 0; /* initialize camera */ capture = cvCaptureFromCAM( 0 ); /* always check */ if ( !capture ) { printf("Cannot open initialize webcam!\n" ); exit(0); } /* create a window for the video */ cvNamedWindow( "result", CV_WINDOW_AUTOSIZE ); while( key != 'q' ) { /* get a frame */ frame = cvQueryFrame( capture ); /* always check */ if( !frame ) break; /* sets the Region of Interest*/ cvSetImageROI(frame, cvRect(150, 50, 150, 250)); /* create destination image */ IplImage *img2 = cvCreateImage(cvGetSize(frame), frame->depth, frame->nChannels); /* * do the main processing with subimage here. * in this example, we simply invert the subimage