Skip to main content

Loading an Image in OpenCV


#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include<opencv2\opencv.hpp>
#include <opencv2\highgui\highgui.hpp>



int main(int argc, char *argv[])
{
IplImage* img = 0;
int height,width,step,channels;
uchar *data;
int i,j,k;
char* change_im(char*);
char *im = "";


if(argc<2){
printf("Usage: main <image-file-name>\n\7");
im = "aresh.jpg"; //decalre DEFAULT
}
else
{
im = argv[1];
}


// load an image
img=cvLoadImage(im);
if(!img){
printf("Could not load image file: %s\n",im);
exit(0);
}



// get the image data
height = img->height;
width = img->width;
step = img->widthStep;
channels = img->nChannels;
data = (uchar *)img->imageData;
printf("Processing a %dx%d image with %d channels\n",height,width,channels);



// create a window
cvNamedWindow("mainWin", CV_WINDOW_AUTOSIZE);
cvMoveWindow("mainWin", 100, 100);



// show the image
cvShowImage("mainWin", img );



// wait for a key
cvWaitKey(0);



// release the image
cvReleaseImage(&img );
return 0;
}

Comments

Popular posts from this blog

Computing Entropy of an image (CORRECTED)

entropy is a measure of the uncertainty associated with a random variable. basically i want to get a single value representing the entropy of an image. 1. Assign 255 bins for the range of values between 0-255 2. separate the image into its 3 channels 3. compute histogram for each channel 4. normalize all 3 channels unifirmely 5. for each channel get the bin value (Hc) and use its absolute value (negative log is infinity) 6. compute Hc*log10(Hc) 7. add to entropy and continue with 5 until a single value converges 5. get the frequency of each channel - add all the values of the bin 6. for each bin get a probability - if bin 1 = 20 bin 2 = 30 then frequency is 50 and probability is 20/50 and 30/50 then compute using shannon formula  REFERENCE: http://people.revoledu.com/kardi/tutorial/DecisionTree/how-to-measure-impurity.htm class atsHistogram { public:     cv::Mat DrawHistogram(Mat src)     {         /// Separate the image in 3 places ( R, G and B )    

Blob Detection, Connected Component (Pure Opencv)

Connected-component labeling (alternatively connected-component analysis, blob extraction, region labeling, blob discovery, or region extraction) is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not to be confused with segmentation. i got the initial code from this URL: http://nghiaho.com/?p=1102 However the code did not compile with my setup of OpenCV 2.2, im guessing it was an older version. so a refactored and corrected the errors to come up with this Class class atsBlobFinder     {     public:         atsBlobFinder()         {         }         ///Original Code by http://nghiaho.com/?p=1102         ///Changed and added commments. Removed Errors         ///works with VS2010 and OpenCV 2.2+         void FindBlobs(const cv::Mat &binary, vector < vector<cv::Point>  > &blobs)         {             blobs.clear();             // Fill the la

Region of interest selection ROI

#include <stdlib.h> #include <stdio.h> #include <math.h> #include <string.h> #include<opencv2\opencv.hpp> #include <opencv2\highgui\highgui.hpp> int main(int argc, char *argv[]) { CvCapture *capture = 0; IplImage *frame = 0; int key = 0; /* initialize camera */ capture = cvCaptureFromCAM( 0 ); /* always check */ if ( !capture ) { printf("Cannot open initialize webcam!\n" ); exit(0); } /* create a window for the video */ cvNamedWindow( "result", CV_WINDOW_AUTOSIZE ); while( key != 'q' ) { /* get a frame */ frame = cvQueryFrame( capture ); /* always check */ if( !frame ) break; /* sets the Region of Interest*/ cvSetImageROI(frame, cvRect(150, 50, 150, 250)); /* create destination image */ IplImage *img2 = cvCreateImage(cvGetSize(frame), frame->depth, frame->nChannels); /* * do the main processing with subimage here. * in this example, we simply invert the subimage